当前位置:首页 行业动态 正文

Vitalik:协议设计中的“封装复杂性” vs. “系统复杂性”

2025-02-28

以太坊协议设计的主要目标之一是最小化复杂性:使协议尽可能简单,同时仍然使区块链能够做好一个有效的区块链网络需要做到的事情。以太坊协议在这方面还远远不够完美,特别是因为它的很多部分都是在 2014-16 年设计的,当时我们对它的理解要少得多,但我们仍然在尽可能地积极努力降低复杂性。

然而,这个目标的挑战之一是复杂性很难定义,且有时,你必须在两个引入不同种类复杂性和具有不同代价的选择之间进行权衡。我们如何比较?

有一个强大的智能工具可以让我们对复杂性进行更细致的思考,那就是区分我们所谓的封装复杂性 (encapsulated complexity) 和系统复杂性 (systemic complexity)。

Vitalik:协议设计中的“封装复杂性” vs. “系统复杂性”

当一个系统的子系统内部复杂,但向外部呈现一个简单的“接口” (interface) 时,就是出现了「封装复杂性」。当系统的不同部分甚至不能被清晰地分开,并且相互之间有复杂的交互时,「系统复杂性」就出现了。

以下是几个例子。

BLS 签名 vs. Schnorr 签名

BLS 签名和 Schnorr 签名是两种常用的可由椭圆曲线构成的加密签名方案。

BLS 签名在数学上看起来非常简单:

Vitalik:协议设计中的“封装复杂性” vs. “系统复杂性”

H 是一个哈希函数,m 是消息,kK 是私钥和公钥。到目前为止,很简单。然而,真正的复杂性隐藏在 e 函数的定义中:椭圆曲线配对(elliptic curve pairings),这是所有密码学中最难以理解的数学部分之一。

现在,我们来看看 Schnorr 签名。Schnorr 签名只依赖于基本的椭圆曲线。但是签名和验证逻辑有点复杂:

Vitalik:协议设计中的“封装复杂性” vs. “系统复杂性”

所以…哪种类型的签名“更简单”?这取决于你在乎什么!BLS 签名具有巨大的技术复杂性,但复杂性都隐藏在 e 函数的定义中。如果你把 e 函数看作一个黑盒,BLS 签名实际上是非常简单的。另一方面,Schnorr 签名的总体复杂性较低,但有更多的部分,能以一种微妙的方式与外部世界互动。

例如:

  • 进行 BLS 多签 (两个密钥 k1 和 k2 的组合签名) 很简单:只需 σ1+σ2。但是 Schnorr 多签名需要两轮交互,并且需要处理一些棘手的 Key Cancellation 攻击。

  • Schnorr 签名需要生成随机数,BLS 签名不需要。

椭圆曲线配对通常是一个强大的“复杂性海绵”,因为它们包含大量封装复杂性,但使解决方案具有更少的系统复杂性。这也适用于多项式承诺领域:将 KZG 承诺 (需要配对) 的简单性与更复杂的内积证明 (inner product arguments,不需要配对) 的内部逻辑进行比较。

密码学 vs. 加密经济学

在许多区块链设计中出现的一个重要设计选择是密码学 (cryptography) 与加密经济学 (cryptoeconomics) 的比较。这 (比如在 Rollups 中) 常常是在有效性证明 (即 ZK-SNARKs) 和欺诈证明之间做出选择。

ZK-SNARKs 是复杂的技术。虽然 ZK-SNARKs 工作原理背后的基本思路可以在一篇文章中解释清楚,但实际上实现一个 ZK-SNARK 来验证一些计算涉及到比计算本身多很多倍的复杂性 (因此,这就是为什么用于 EVM 的 ZK-SNARKs 证明仍在开发中,而用于 EVM 的欺诈证明已经在测试阶段)。有效地实现